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Forest health and disturbance
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Mountain Pine Beetle

> 18 x 10° ha affected in Canada; > 6 x 10° ha in the USA
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Mountain pine beetle outbreaks are episodic and natural
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Dendroctonus ponderosae



Forest health and disturbance

 Outbreaks of native forest insects are an
important agent of disturbance in the boreal
forest




Forest health and disturbance

 OQutbreaks of native forest insects are an B Mountain pine bestle
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 However... the current MPB outbreak is larger
than ever observed and the species appears to
be undergoing a range expansion

* Climate change and the legacies of forest
management are the likely cause (Raffa et al
2008; Bioscience)




Forest health and disturbance

 Outbreaks of native forest insects are an
important agent of disturbance in the boreal
forest

 However... the current MPB outbreak is larger
than ever observed and the species appears to
be undergoing a range expansion

* Climate change and the legacies of forest
management are the likely cause (Raffa et al
2008; Bioscience)

 Downstream effects on timber, forest
succession, carbon, fire risk, water quality, and
biodiversity ...




Forest insect outbreaks are costly

~ S500 million invested so far in Alberta to

combat the MPB

Estimated cumulative loss equal to ~S57 billion

from 2009 to 2054 in British Columbia
* Corbett et al 2015; Forestry

Current spruce budworm outbreak in NB is
expected to result in losses between $5 and S§7

billion over the next 40 years

* Healthy Forest Partnership, NB. 2017

Similar losses expected in Quebec
 Changetal 2012; CJFR
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Province has invested $484 million in decade-long fight against destructive
bark beetle

Zoe Todd - CBC News - Posted: Sep 13, 2017 7:00 AM MT | Last Updated: September 13, 2017

Mountain pine beetles are native to B.C. but are considered an invasive species in Alberta. (Ward
Strong/B.C. Ministry of Forests, Lands, and Natural Resource Operations)
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Mountain Pine Beetle Outbreak System




Ongoing Range Expansion
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Landscape Genetics / Genomics

* Landscape Genetics: Combination of landscape
ecology, spatial statistics, and population genetics
to examine how spatial heterogeneity affects gene
flow and dispersal (Manel et al. 2003).

* Landscape Genomics: Combination of landscape
ecology, spatial statistics, and population genomics
to examine how spatial heterogeneity affects
spatial patterns in adaptive genetic variation.
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Latitude

MPB Landscape Genetics
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* Question : What environmental
features influence MPB genetic
connectivity and gene flow?

* Addressed using 532 beetles sequenced

at 764 SNP loci (/llumina GoldenGate)
collected from 27 sites across AB and BC.

* Predictors examined : elevation, pine
volume, drought, and climate suitability



Why do we care about MPB movement?

* Movement is a fundamental but poorly understood aspect of MPB
biology

* Understanding which landscape features hinder or facilitate MPB
movement can help us develop and inform better spatial tools to
forecast outbreak dynamics.

* Forecasting can help managers to reduce risk and limit the impacts of
the outbreak on the economy and ecosystem services.



Speciftying resistance surfaces is challenging

* Modelling spatial environmental effects on
gene flow requires specification of genetic and
GEOGRAPHIC ecological distance matrices

* Forms of relationships between landscape
values of resistance to movement is typically
unknown (Spear et al 2010)

* How to choose costs appropriately without a
priori knowledge?

* Linear mixed effects model with a maximum
likelihood population effects (MLPE)

* Machine Learning / Genetic Algorithms




Single surface optimizations
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Optimized “best” composite surface

* Elevation + Climate Suitability : AB
» Weighting: 69% climate; 31% elevation
* Large islands of less resistance .
* Cost heterogeneity decreases eastward: - Z
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Forecasting future spread risk using circuit theory...

A) Elevation + CSI B) Pine Volume



Integrated landscape genetics
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Integrated landscape genetics
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Integrated landscape genetics
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Integrated landscape genetics
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Landscape Community Genomics —

Ecology, 84(3), 2003, pp. 559573 I
@ 2003 by the Ecological Society of America

COMMUNITY AND ECOSYSTEM GENETICS: A CONSEQUENCE OF THE
EXTENDED PHENOTYPE
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Spatial Genetic Structure of a Symbiotic Beetle-Fungal
System: Toward Multi-Taxa Integrated Landscape
Genetics
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Landscape community genomics:
understanding eco-evolutionary
processes in complex environments

Brian K. Hand"", Winsor H. Lowe”’, Ryan P. Kovach'?, Clint C. Muhlfeld?,
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and Gordon Luikart | Trends in Ecology & Evolution March 2015, Vol. 30, No. 3|




Landscape Community Genomics

e Can we identify groups of potentially adaptive loci among
species that cluster together?

* Search for OUTBREAK SYNDROMES

= spatially structured, inter-species associations of
putatively adaptive alleles.
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Landscape Community Genomics

Why do we care?

 Qurgoalistoimprove understanding of spatial eco-evolutionary
community and population dynamics of outbreaks and range expansions.

[- Is rapid co-evolution driving system dynamics and outbreak expansion? J

%
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MPB Landscape Community Genomics
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MPB Landscape Community Genomics
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Study area and genomic data
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Analysis pipeline

1. Start with community genotypic data (SNPs).

2.

Identify outlier loci using Latent Factor Mixed Models (Frichot et al 2015).

 Response: top 10 putatively adaptive loci for each species (MPB = 20)
*  Predictor: Latitude*
 Ks (latent factors) selected on the basis on min. cross-entropy (LEA).

Merge individual species tables into a to single genomic community table
Cluster outlier loci based on frequency of co-occurrence among sites.

Assess significance of co-occurring loci clusters using Kendall’s W.

Legendre 2005. Species Associations: The Kendall coefficient of Concordance Revisited. Journal of
Agricultural, Biological, and Environmental Statistics. 10(2): 226-245.

Assess geographical distribution of clusters using PCA.
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Allele Frequency
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Geographic association of clusters?
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Interpretations

We identified significant inter and intra-specific clusters of
outlier loci at the community level.

These clusters show some fidelity to known expansion axes.

Outbreak expansion *may* be in part due to spatial
evolutionary dynamics among species.

This community-genomics framework can be applied to

other multi-taxa systems to better understand adaptive
dynamics during outbreaks and range expansions.




Caveats

We don’t know if the loci we used are really “adaptive”.

* Further functional characterization is still required to identify specific
roles.

|dentifying loci under selection during range expansions can be biased due
to allele surfing.

Correlative results; we don’t yet know the eco-evolutionary mechanisms
connecting allele frequencies among species.

We have not distinguished yet between simple induced spatial dependence
VS species interactions...
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